

Green endoscopy, one step towards a sustainable future: a review of the literature.

Journal:	<i>Endoscopy International Open</i>
Manuscript ID:	Draft
Manuscript Type:	Review
Date Submitted by the Author:	n/a
Complete List of Authors:	<p>Maida, Marcello; ASP di Caltanissetta, Gastroenterology and Endoscopy Unit, S. Elia Hospital</p> <p>Vitello, Alessandro; ASP di Caltanissetta, Gastroenterology and Endoscopy Unit, S. Elia Hospital</p> <p>Shahini, Endrit; Istituto Nazionale di Ricovero e Cura a Carattere Scientifico Saverio de Bellis, Gastroenterology Unit</p> <p>Vassallo, Roberto; Buccheri La Ferla Fatebenefratelli Hospital, Gastroenterology Unit</p> <p>Sinagra, Emanuele; Fondazione Istituto San Raffaele G Giglio di Cefalù, Gastroenterology and Endoscopy Unit</p> <p>Pallio, Socrate; University of Messina, Digestive Diseases Endoscopy Unit, Policlinico G. Martino Hospital</p> <p>Melita, Giuseppinella; University of Messina, Digestive Diseases Endoscopy Unit, Policlinico G. Martino Hospital</p> <p>Ramai, Daryl; The University of Utah School of Medicine, Gastroenterology and Hepatology</p> <p>Spadaccini, Marco; IRCCS Humanitas Research Hospital, Endoscopy Unit</p> <p>Hassan, Cesare; IRCCS Humanitas Research Hospital, Endoscopy Unit</p> <p>Facciorusso, Antonio; University of Foggia, Gastroenterology Unit, Department of Medical Sciences</p>
Keywords:	Performance and complications < Quality and logistical aspects, Quality management < Quality and logistical aspects, Image and data processing, documentatiton < Quality and logistical aspects
Abstract:	<p>Rapid climate change or climate crisis is one of the most serious emergencies of the twenty-first century, accounting for highly impactful and irreversible changes around the world. Climate crisis may also affect the epidemiology and disease burden of gastrointestinal (GI) diseases as they hold a connection with environmental factors and nutrition.</p> <p>GI endoscopy is a highly intensive procedure with a significant contribution to greenhouse gas (GHG) emissions. Moreover, endoscopy is the third highest generator of waste in healthcare facilities with significant contributions to carbon footprint. Main sources of direct carbon emission in endoscopy are the use of high-powered consumption devices (e.g., computers, anesthesia machines, reprocessing machines, scope processors and lighting), and waste production mainly derived from the use of disposable devices. Indirect sources of emissions are those derived from the heating and cooling of facilities, processing of</p>

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

histological samples, transportation of patients and materials, etc. Consequently, sustainable endoscopy and climate change have been the focus of discussions between endoscopy providers and professional societies with the aim of taking action to reduce environmental impact. The term "green endoscopy" refers to the practice of GI that aims to raise awareness, assess, and reduce endoscopy's environmental impact. Nevertheless, while awareness has been growing, guidance on practical interventions to reduce carbon footprint of endoscopy are lacking. The aim of this review is to summarize current data regarding the impact of endoscopy on GHG emissions and possible strategies to mitigate this phenomenon. Further, we aim to promote the evolution of a more sustainable "green endoscopy".

SCHOLARONE™
Manuscripts

1
2
3 **Journal:** Endoscopy International Open
4
5
6

7 **Article type:** Review
8
9

10 **Title:** Green endoscopy, one step towards a sustainable future: a review of the literature.
11
12

13 **Authors:** Maida M¹, Vitello A¹, Shahini E², Vassallo R³, Sinagra E⁴, Pallio S⁵, Melita G⁵,
14 Ramai D⁶, Spadaccini M⁷, Hassan C⁷, Facciorusso A⁸.
15
16

17 **Institutions:** ¹Gastroenterology and Endoscopy Unit, S. Elia Hospital, Caltanissetta,
18 Italy; ²Gastroenterology Unit, National Institute of Gastroenterology "S de Bellis"
19 Research Hospital, Castellana Grotte, Bari, Italy; ³Endoscopy Unit, Buccheri La Ferla
20 Hospital, Palermo, Italy; ⁴Gastroenterology and Endoscopy Unit, Fondazione Istituto San
21 Raffaele Giglio, Cefalù, Italy; ⁵Digestive Diseases Endoscopy Unit, Policlinico G. Martino
22 Hospital, University of Messina, Messina, Italy; ⁶Gastroenterology & Hepatology,
23 University of Utah Health, Salt Lake City, UT, USA; ⁷Endoscopy Unit, Humanitas Clinical
24 and Research Hospital, IRCCS, Rozzano, Italy; ⁸Gastroenterology Unit, Department of
25 Medical Sciences, University of Foggia, Foggia, Italy.
26
27
28

29 **Conflict-of-interest statement**
30
31 All authors have no proprietary, financial, professional or other personal interest of any
32 nature or kind in any product, service and/or company that could be construed as
33 influencing the position presented in, or the review of this manuscript.
34
35

36 **Funding:** none.
37
38

39 **Word count:** 4482.
40
41

42 **Author contributions:** MM, RV and AF are the guarantors of the integrity of the entire
43 study and contributed to the manuscript drafting and revision for important intellectual
44 content; all authors contributed to the manuscript editing and had full control over the
45 preparation of the manuscript.
46
47

48 **Corresponding author:**
49
50 Marcello Maida MD, Section of Gastroenterology, *S. Elia – M. Raimondi Hospital -*
51 *Caltanissetta, Italy*, Mail: marcello.maida@hotmail.it; Telephone: +39 0934512247; Fax:
52 +39 0934512323.
53
54
55

1 2 3 ABSTRACT 4

5 Rapid climate change or climate crisis is one of the most serious emergencies of the twenty-
6 first century, accounting for highly impactful and irreversible changes around the world.
7

8 Climate crisis may also affect the epidemiology and disease burden of gastrointestinal (GI)
9 diseases as they hold a connection with environmental factors and nutrition.
10

11 GI endoscopy is a highly intensive procedure with a significant contribution to greenhouse
12 gas (GHG) emissions. Moreover, endoscopy is the third highest generator of waste in
13 healthcare facilities with significant contributions to carbon footprint. Main sources of direct
14 carbon emission in endoscopy are the use of high-powered consumption devices (e.g.,
15 computers, anesthesia machines, wash machines for reprocessing, scope processors and
16 lighting), and waste production mainly derived from the use of disposable devices. Indirect
17 sources of emissions are those derived from the heating and cooling of facilities, processing
18 of histological samples, transportation of patients and materials, etc.
19

20 Consequently, sustainable endoscopy and climate change have been the focus of
21 discussions between endoscopy providers and professional societies with the aim of taking
22 action to reduce environmental impact. The term "green endoscopy" refers to the practice
23 of GI that aims to raise awareness, assess, and reduce endoscopy's environmental impact.
24 Nevertheless, while awareness has been growing, guidance on practical interventions to
25 reduce carbon footprint of GI endoscopy are lacking. The aim of this review is to summarize
26 current data regarding the impact of endoscopy on GHG emissions and possible strategies
27 to mitigate this phenomenon. Further, we aim to promote the evolution of a more sustainable
28 "green endoscopy".
29

1 2 3 INTRODUCTION 4

5 Rapid climate change is a serious emergency of the twenty first century. This climate crisis
6 has created highly dangerous and irreversible changes with serious consequences around
7 the world on a daily basis, from human health to economic and geopolitics.
8
9

10 According to the Global Climate Report of the National Centers for Environmental
11 Information, the global surface temperature in September 2022 tied for the fifth highest
12 position since the record began in 1880 [1].
13
14

15 Because of their impact on energy retention in the atmosphere, greenhouse gases (GHG)
16 represent a critical link between human activities and rising temperatures. Deforestation, air
17 pollution, and the use of fossil fuels contribute significantly to GHG production and
18 accumulation, leading to global warming and extreme weather events.
19
20

21 The term 'carbon footprint' is defined by the Carbon Trust as "the total set of GHG caused
22 directly and indirectly by an individual, event, organization or product." GHG refers to any
23 gas which accumulates in the atmosphere and absorbs and re-emits heat, thereby carrying
24 the potential for global warming. Carbon dioxide (CO₂) accounts for 85% of all GHG, while
25 other "CO₂ equivalent gases" include Methane (CH₄), Nitrous oxide (N₂O),
26 Hydrofluorocarbons (HFCs), Perfluorocarbons (PFCs), Sulfur hexafluoride (SF₆), Nitrogen
27 trifluoride (NF₃), etc.
28
29

30 Consequently, the UK NHS has committed to a net-zero carbon footprint for directly
31 controlled emissions by 2040 and net zero for those within its supply chain (indirectly) by
32 2045 [2]. Current global targets to face the climate crisis include reaching net-zero carbon
33 emissions by 2050 and keeping rising global temperature below 1.5 °C [3].
34
35

36 Rising temperatures can have a direct impact on health, causing a significant increase in
37 disease, morbidity and mortality, and potentially leading hospitals and health services to
38 collapse.
39
40

1
2
3 Climate crisis may also affect the epidemiology and burden of gastrointestinal (GI) diseases
4 since they have a close connection with environmental factors and nutrition. For instance,
5 environmental changes may affect the quality and contamination of land and agricultural
6 products thereby increasing the spread of infectious diseases in both developing and
7 industrialized countries. The corollary of consuming poor-quality food has far reaching
8 consequences which includes altering the epidemiology of GI cancers, increasing the level
9 of stress of the general population, and possibly increasing the prevalence of gut-brain
10 interaction disorders (DGBI) [4-7].
11
12
13
14
15
16
17
18
19
20

21 In a call to action to raise awareness about environmental issues and the need to keep the
22 Earth's temperature stable, 197 countries signed the famous Glasgow Climate Pact in
23 2021COP 26. More recently, in November 2022 at Sharm el Scheikat WHO Health pavilion,
24 at the United Nations Climate Change Conference COP 27, countries promised to reduce
25 CO₂ emissions and decarbonization [8].
26
27
28
29
30
31
32
33
34

35 **THE IMPACT OF GI ENDOSCOPY IN THE CARBON EMISSIONS**

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

51 Healthcare systems are estimated to produce 4.4% of global GHG emissions (equivalent to
52 the annual emissions from 514 coal-fired power plants) [9]. Gastrointestinal (GI) endoscopy
53 has direct and indirect impacts on the global carbon footprint. This includes travel for patients
54 and relatives, use of multiple single-use devices, repeated decontamination processes with
55 high energy impact, frequent request for histological examinations, and nonrenewable waste
56 production [10].
57
58

59 One procedure generates 1.5-2 Kg of plastic waste but only 0.3 Kg is recyclable. A recent
60 estimate showed that the energy consumption over an average of 40 procedures per day
61 was estimated at 31,416 kWh per year, accounting for carbon emissions of 22.1 tCO₂ per
62 year (Figure 1) [11-12].
63
64

1
2
3 In the UK the healthcare system is responsible for 6.3% of UK's total carbon emissions and
4 5% of total air pollution [13]. Of note, this estimate excludes the energy consumption
5
6 necessary for heating and cooling which adds to the overall carbon footprint.
7
8

9
10 Concerning waste production, endoscopy is the third highest generator of waste in
11 healthcare facilities, with significant contributions to emissions worldwide.
12
13

14 Each endoscopy bed-day is thought to generate approximately 3 kg of waste, and the
15 specialty is responsible for 13,500 tons of plastic waste in the United States each year,
16 making it the hospital's third-highest waste generator [10]. Most supplies used during
17 endoscopic examinations are often disposable and made of plastic, resulting in
18 approximately 2 kg of waste per procedure [12].
19
20

21 A recent study estimated the environmental impact of a digestive endoscopy unit by
22 measuring the mass and volume of trash in suites, pre-procedure, and post-procedure areas
23 [14]. The total waste generated during a 5-day routine in a high-volume endoscopic center
24 was 546 kg, which included direct landfill, biohazard, and recycled waste. During the same
25 period, 73 kg of total waste was generated in a low-volume center. Using the number of
26 endoscopic procedures performed in the United States each year (18 million), the authors
27 calculated a disposable waste production of 836,000 cubic meters per year, which is
28 equivalent to covering approximately 117 soccer fields to a height of 1 meter with trash.
29
30

31 Another analysis estimated CO₂ emissions of more than 3 million gallons of gasoline
32 consumed or more than 39 million pounds of coal burnt [12].
33
34

35 Sequestering the CO₂ produced by endoscopy procedures would take 112,009 acres of
36 forests for 1 year [11,12]. Thus, to decarbonize health care, endoscopy represents a high-
37 yield mitigation opportunity [14].
38
39

SOURCES OF CARBON EMISSION IN ENDOSCOPY

Direct sources of emission

Decontamination and reprocessing of endoscopic equipment

Equipment reprocessing is a critical step for reusable endoscopes where effective cleaning and sterilization is required to prevent transmissible infection. The process is complex and resource consuming, involves multiple cycles requiring large volumes of tap or filtered or deionized water (80-100L per wash), electricity, heat, disinfectants and detergents. Reprocessing may be broken down to include: precleaning, cleaning, disinfection, rinsing, drying, and cleaning of reusable components. Each endoscopy wash machine incurs approximately 24.67 kWh/d equating to 0.017 tCO2e/d) [12, 14-19].

In fact, some national or professional guidelines recommend using sterile water for rinsing endoscopes. If sterile water is not available, these guidelines recommend using potable tap water and flushing endoscope channels with alcohol [19]. The adoption of double basin washing machines uses less energy when cleaning 2 scopes (simultaneously) compared with single basin wash machines (600 W for 2 scopes cleaned vs 400 W for one scope cleaned, respectively) [11].

The consequences from improperly performed reprocessing of endoscopes can be disastrous to our patients, clinicians, and the organization. To this end, poorly cleaned endoscopes place patients at risk for acquiring infections. Additionally, exposure to biohazardous and toxic conditions in the reprocessing room can be harmful. The centralization process is driven with the primary goals of increasing reprocessing oversight and efficiency, increasing productivity through the deployment of a dedicated reprocessing team, promoting standardization of products utilized in reprocessing, reduction in the requirements for capital reprocessing equipment, and reducing reprocessing variability [19].

1 2 3 Single-use devices 4

5 The use of disposable materials in endoscopy mainly refers to two areas: single-use
6 ancillary devices and single-use endoscopes.
7
8

9 Endoscopy requires a significant number of single-use ancillary devices. Most of them are
10 disposable, and made of plastic, accounting for approximately 1.5-2 kg of waste per
11 procedure [12,14,18]. Moreover, digestive endoscopy and its accessories produce
12 significant amounts of highly polluting elements such as nickel, titanium and synthetic
13 polymers [15,16].
14
15

16 Concerning single-use endoscopes, recent research has been focused on duodenoscope-
17 associated infections. In fact, the use of these endoscopes poses a significant reprocessing
18 challenge for a variety of reasons, and a recent meta-analysis of over 13,100 samples
19 revealed a 15% contamination rate of reprocessed patient-ready duodenoscopes [17,18].
20
21 However, the clinical impact of contaminated endoscopes is debatable.
22
23

24 Single-use endoscopes have been developed as a solution to decreasing endoscopy—
25 related infections. In addition, the concept of single-use endoscopes has expanded from
26 duodenoscopes to gastroscopes and colonoscopes.
27
28

29 Nevertheless, the sustainability of these endoscopes is still debated, since recyclable metal
30 represents only a smaller part of the endoscope and, therefore, the main part of the device
31 is disposed of in the same way as other waste [20].
32
33

34 Concerning reprocessing-related emissions, recent data showed that using single-use
35 endoscopes, with an assumed infection rate of 0.02%, would produce 20 to 47 times the
36 CO₂ emissions of reusable duodenoscopes without accounting for packaging or transporting
37 of disposed duodenoscopes [21].
38
39

40 Moreover, a recently published paper has quantified the implications of a single-use
41 endoscope and showed that it would result in 40% increase in total waste after accounting
42 for the lack of waste from reprocessing [14].
43
44

If all endoscopic retrograde cholangiopancreatographies (ERCP) and colonoscopies were performed with disposable rather than reusable devices, the net waste mass generated per endoscopic procedure would increase by 25%, even if waste mass generated from reprocessing would decrease [14].

A recent RCT showed that in patients with bacterial infections (with positive rectal swab), the rate of post-ERCP infections was 0% after testing for the pathogens isolated from the rectal swab prior to the procedure [22].

In the United States, approximately 500,000 ERCPs are performed annually [23]. The rate of serious infections occurring is about 0.007% (36 cases per 500,000 procedures) likely due to ineffective cleaning based on 2018 data. The use of disposable endcaps would be able to reduce this number by half, to a theoretical rate of 0.0046% (23 cases per 500,000 procedures). With a contaminations rate of 1/1600 ERCPs and a transmission range from 1/1,800,000 to 1/276,000 ERCPs, the risk of a patient becoming infected by a contaminated endoscope seems to be exceptionally low, at too high a cost for the current and future generations (ICER 500,000 USD) [21].

Despite their theoretical advantage, the role of single-use endoscopes is still debatable. It should be clarified which instruments are to be considered for single-use only (duodenoscopes only or also gastrosopes and colonoscopes). The type of patients should also be clarified (e.g. ICU, frail or immune compromised). Additionally, the minimal level of preventable infections should be defined. Importantly, the ability to recycle single-use instruments should be transparent [10].

The recycling programs offered for disposable endoscopes involves the recycling of only a small portion of the endoscope while the rest is burnt, like other trash [18].

A recent international group of experts identified a series of best practice recommendations for single use endoscopes and accessories using a modified Delphi process. They concluded that further research is needed for expanding possible indications of single-use

1
2
3 scopes. Additionally, it was recommended that single use endoscopes should be distributed
4 with an effective recycling mechanism in place, considering patient characteristics and
5 setting (frail, immunocompromised patient or treated in an intensive care unit setting,
6 ongoing sepsis or MRDO infections).
7
8

9
10 Overall, the safety, environmental impact, sustainability and acceptability of single use
11 endoscopes should be explored prior to their adoption [19].
12
13

14
15
16
17
18 High power consumption devices
19

20
21 Endoscopy facilities are characterized by their high energy consumption. The main sources
22 of energy consumption within endoscopy units are, in descending order: 1) computers, 2)
23 anesthesia machines, 3) washing machines, 4) scope processors and 5) lighting [11].
24
25

26 Computers consume a large amount of energy. However, they enable data digitization and
27 avoid secondary emissions resulting from paper consumption. However, their consumption
28 must be limited, especially when not in use.
29
30

31 The reprocessing of reusable endoscopes is a resource-intensive process that requires
32 large amounts of water (30 gallons per cycle), disinfectants, detergents, as well as electricity
33 (24.67 kWh per day) [12].
34
35

36 Similarly, lights can be optimized by replacing halogen lights with LEDs and optimizing their
37 use (for example, using soft lights during endoscopic tasks, and ensuring they are switched
38 off when not in use).
39
40

41
42
43
44
45
46
47 Personal protective equipment
48
49

50
51 Personal protective equipment (PPE) (e.g. face-masks, gowns, aprons, gloves) are often
52 used during endoscopy. The need for PPE grew during the COVID-19 pandemic and
53 increased the production of waste (about 8,060,000 Kg per year in Italy), with significant
54 environmental consequences [24-27]. For these reasons, PPE-related waste may be
55
56
57
58
59
60

1
2
3 minimized by bringing together COVID patients on the same endoscopy list. Moreover, PPE
4 capable of being disinfected and reusable should be preferred, when feasible.
5
6
7
8
9

10 **Indirect sources of emission**

11

12 Endoscopic activities are also characterized as having indirect emissions. These include the
13 journey of patients to hospitals, especially referral centers, which are usually further away.
14 To this end, travel generates considerable GHG emissions. Added to this are the costs of
15 transporting materials required by endoscopy units. This cost can be higher depending on
16 the distance between the producer and consumer [11].
17
18

19 Moreover, packaging of supplies used in endoscopy significantly impacts GHG emission,
20 and accounts for a significant rate of plastic waste. As a result, about one million metric tons
21 of clean plastic is generated by healthcare systems each year, with only a minimal amount
22 of this plastic waste being recovered [26].
23

24 Finally, endoscopy often requires additional diagnostic examinations such as histology.
25 Processing of biopsy samples taken during endoscopy is responsible for high GHG
26 emissions. Above all, this concerns all the steps necessary for the processing of biological
27 samples including the production and travel of chemical reagents, the production of waste,
28 and electricity consumption.
29
30

31 Applied to more than 20 million biopsies performed in the US annually, emissions from
32 biopsy processing are equivalent to yearly GHG emissions from 1,200 passenger cars [28].
33
34

35 **STRATEGIES TO IMPROVE THE SUSTAINABILITY OF ENDOSCOPY**

36

37 Gastroenterologists and endoscopists should reconsider daily activities and pay more
38 attention to sustainability. The term "green endoscopy" refers to the practice of GI that aims
39 to raise awareness, assess, and reduce the environmental impact of endoscopy.
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 In this regard, measures may be applied to mitigate carbon footprint and favour the evolution
4 of a more sustainable "green endoscopy".
5
6

7 According the World Health Organization (WHO) the general strategies for reducing GHG
8 emissions can be summed up in "3 Rs": "Reduce, Reuse, Recycle" [10,11]. Other important
9
10 Rs are Review, Research and Re-invent, Recover, and Repair [29].
11
12

13 All these principles can be applied in endoscopy with a multi-level approach, from individuals
14 to institutions (Figure 2).
15
16

21 Inappropriate diagnostic and follow-up examinations

22 Data from literature show that the rate of inappropriate examinations reach up to 52% of
23 upper GI endoscopies and 23% to 52% of colonoscopies [30].
24
25

26 Therefore, a first step is that of reducing the number of inappropriate diagnostic
27 examinations, such as in young patients without risk factors or alarm symptoms.
28
29

30 Another point is reducing inappropriate endoscopic follow-up. The most frequent cases are
31 follow-up of chronic distal atrophic gastritis without dysplasia and no additional risk factors,
32 peptic duodenal disease, or low-risk polyps removed at colonoscopy. In these cases, it is
33 important to avoid unnecessary testing and ultimately reduce GHG emissions [31]
34
35

36 In this regard international guidelines for improving endoscopic appropriateness should
37 guide clinical practice on indications for surveillance and diagnostic endoscopy (Table 1)
38 [29, 32-33].
39
40

41 Moreover, several non-invasive biomarkers can be used which allows endoscopy to be
42 avoided in the diagnosis or follow-up of some GI diseases. For instance, the Baveno VI
43 criteria (i.e., liver stiffness measured (LSM) < 20 kPa and PLT > 150 x 10⁹/L) can be used
44 to predict patients with advanced chronic liver disease in whom the risk of varices is low,
45 and upper endoscopy deemed unnecessary [34-35].
46
47

1
2
3 Concerning the lower GI tract, the faecal immunochemical test (FIT) is used as a primary
4 screening method for colorectal cancer, ruling out non-at-risk patients in whom colonoscopy
5 is not indicated [36].
6
7
8

9
10 Additionally, in patients with IBD, fecal calprotectin is used as a non-invasive marker of
11 response, reducing the need for endoscopic follow-up and to rule out organic diseases in
12 patients with functional disorders [37].
13
14
15

16
17
18
19 **Biopsy sampling and histology**
20

21 As discussed above, processing of biopsy samples taken during endoscopy is responsible
22 for high GHG emission. Above all, this concerns all the steps necessary for the processing
23 of the sample, the production and travel of chemical reagents, the production of waste,
24 electricity consumption.
25
26

27 Applied to more than 20 million biopsies performed in the US annually, emissions from
28 biopsy processing are equivalent to GHG emissions from 1,200 passenger cars yearly [28].
29 Therefore, it is essential to apply mitigation strategies aimed at limiting histological
30 examination only to necessary cases, informed by guidelines and correct number of samples
31 [38-39].
32
33

34 Furthermore, innovations in endoscopic imaging (e.g. virtual chromoendoscopy and
35 magnification) has improved mucosal visualization and endoscopic diagnosis. These
36 improvements help to identify low-risk lesions such as hyperplastic polyps which enables a
37 “resect-and-discard” and/or “diagnose and leave” approach, thus avoiding unnecessary
38 histology [40].
39
40

41 Looking ahead, the implementation of artificial intelligence (AI) with computer-aided
42 characterization (CADx) will allow a further gain in optical diagnosis in favor of strategies
43 that do not require histology [41].
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 When planning an endoscopic procedure, the environmental impact of disposable and
4 reusable devices should be considered. Furthermore, when purchasing medical
5 accessories, endoscopic instruments, and washing machines, those with a lower carbon
6 footprint (which should be clearly indicated on product labels by the manufacturer) or made
7 from recyclable materials should be preferred.
8
9
10
11
12
13
14
15
16

17 Procedures to be repeated or rescheduled

18
19 Another crucial area has to do with reducing the number of endoscopic exams that have to
20 be rescheduled. This frequently occurs in patients who must perform colonoscopy and who
21 do not achieve an adequate degree of bowel preparation, or in patients who must perform
22 upper GI and have not followed the dietary rules, or in patients who must perform operative
23 procedures but who have not followed guidelines on the suspension of
24 antiplatelet/anticoagulant agents.
25
26
27
28
29
30
31
32

33 This goal can be met by improving patient communication and appointment scheduling,
34 choosing the best effective and safe bowel preparation for colonoscopy, and managing
35 antiplatelet and/or anticoagulant drugs [42-44].
36
37
38
39
40
41

42 Resource optimization

43
44 Wasteful use of resources within an endoscopy unit leads to higher cost and environmental
45 impact. Strategies aimed at optimizing resources should be adopted. For example, the
46 adoption of recyclable materials, the use of reusable or recyclable PPE, and the purchase
47 of local products that reduce transport distances.
48
49
50
51
52

53 Sterile endoscopic water should also be limited to patients at high risk of infection such as
54 immunocompromised patients. Tap water should be used routinely in the irrigation bottle,
55 since it has been demonstrated to be as safe as sterile water. This would have both
56 environmental and economic impacts [45].
57
58
59
60

Energy optimization

Energy consumption from electricity accounts for 10-30% of the environmental impact of individuals and healthcare systems [11].

The use of electricity is another element that contributes to the environmental impact of endoscopy. Green use of energy should be promoted in all endoscopy units: lights should be turned off when not in use for long periods, halogen should be replaced by LED lights, optimize heating and air conditioning necessary to maintain a comfortable ambient temperature, shutting down computers overnight, and use of renewable energies (e.g. photovoltaic) should be promoted when possible [11]. Finally, rechargeable batteries should be preferred over standard ones.

Waste minimization, reuse, and recycling

Waste management and disposal are essential to reduce GHG emissions.

As discussed above, the waste-management hierarchy should be based on the concept of the “3Rs”: reduce, reuse, and recycle (Figure 3).

The most preferable approach should be avoiding the production of waste as much as possible and minimizing the quantity entering the waste stream. Where feasible, according to best practice, recovering items for secondary use is the most preferable option. Waste that cannot be recovered must then be dealt with by least preferable options, such as treatment or land disposal, to reduce its health and environmental impacts [46].

Endoscopy rooms should have a plan for proper waste disposal, with separate bins dedicated to each item (paper, plastic, glass, etc.) to ensure proper recycling.

Telemedicine and electronic records

The migration of patients towards tertiary treatment centers, which are generally located at greater distances, can add to transport-associated emissions.

1
2
3 The COVID pandemic has accelerated the spread of telemedicine, which now represents a
4 fundamental resource of the healthcare system. Data shows that telemedicine is highly
5 effective and financially beneficial. Moreover, it may reduce transport-associated emissions
6 with carbon footprint savings ranging between 0.70-372 kg CO₂ per consultation [47].
7
8

9
10 Additionally, the use of paperless communication, electronic reports/letters, and
11 encouraging patients to sign up to view their results online would save both paper and gas
12 mileage [18]. Adopting double sided printing or reducing the number of printed copies can
13 also have a small but positive environmental effect [13].
14
15

16 Telemedicine can be used for follow-up visits in patients with chronic diseases (e.g. chronic
17 liver diseases, IBD etc.) or reviewing laboratory tests or histological reports (e.g. following
18 endoscopy) [48-50].
19
20

21 In addition, teleconsultation can be used for consultations between specialists and meetings
22 with multidisciplinary teams (MDT).
23
24

25 Moreover, in the field of digital technologies, the use of electronic medical records (EMRs)
26 as well as the generation of digital reports over paper copies, may improve not only the
27 accessibility of information, but also the environmental impact.
28
29

42 THE ROLE OF INSTITUTIONS AND SCIENTIFIC SOCIETIES

43
44

45 Institutions will play a key role in determining the environmental sustainability of endoscopy.
46 Firstly, increasing physician and staff awareness is needed, which can be achieved by
47 implementing educational programs.
48
49

50 Secondly, partnering with industry is important for creating a shared vision aimed at reducing
51 direct and indirect emissions. It will be crucial to share strategies with manufacturers aimed
52 at optimizing production, product packaging, and distribution.
53
54

55 Furthermore, providing financial incentives may support eco-friendly projects and facilitate
56 sustainable transitions.
57
58

1
2
3 Scientific societies will play a decisive role in this process. Many of them have already issued
4
5 consensus statements which summarize the guidelines to be adopted for a green
6
7 endoscopy including the Association of the European Society of Gastrointestinal Endoscopy
8
9 (ESGE) and European Society of Gastroenterology and Endoscopy Nurses and Associates
10
11 (ESGENA) [51], the British Society of Gastroenterology (BSG) [52], and the Italian
12
13 Association of Hospital Gastroenterologists and Digestive Endoscopists (AIGO) [29].
14
15

16 In the future, it would be desirable for other national scientific societies to fit this job by
17
18 issuing tailored position statements at the national level, based on geographical differences
19
20 and local needs.
21
22

23 In addition to the formal recommendations, a periodic audit to verify the adherence of the
24
25 individual endoscopy units to recommended standards, as well as certification and
26
27 accreditation of green endoscopy on the national level will be necessary [12].
28
29

30 Finally, scientific societies should act to encourage educational models, and promote further
31
32 research on green endoscopy.
33
34

35 The next step is to seek individuals who can support the change both at management and
36
37 grass roots levels, creating a “guiding coalition” and constant presence. This would involve
38
39 making the changes that are easy to achieve by staff members but have a significant impact
40
41 [13].
42
43

44 45 46 47 48 49 CONCLUSIONS 50

51 The climate crisis calls for quick and decisive action. In this setting, the healthcare system
52
53 contributes significantly to the climate crisis but it has the opportunity to be part of the
54
55 solution. Therefore, it must be involved in raising awareness and helping to develop
56
57 regulatory guidelines aimed at mitigating GHG emissions.
58
59

1
2
3 Concerning endoscopy, the near future goal is to make endoscopy units 'green' through
4 uniform worldwide action. Measures aimed at reducing emissions have been mentioned
5 above; the careful evaluation of the indications for endoscopic and histological
6 examinations, the rationalization of disposable devices, careful management of PPE,
7 optimization of energy use and correct waste disposal are practical strategies.
8
9

10 Moreover, a fundamental role will be played by telemedicine to reduce the environmental
11 impact linked to the transport of patients for follow-up visits.
12
13

14 Looking ahead, endoscopy units will have to be evaluated in terms of performance and
15 efficiency globally. To this end, sustainability should now be considered a central domain of
16 quality in healthcare, extending the responsibility of health services to both current and
17 future patients.
18
19

20 We believe that healthcare institutions will also play a key decision-making role in this green
21 transition. Economic investments and partnership with stakeholders in terms of enhancing
22 healthcare's economic, social, and environmental impacts will be essential to achieving
23 these goals.
24
25

26 However, the cultural aspect also plays a key role. Therefore, in addition to focusing on
27 general regulation, it will be necessary to invest in the education of the younger generations.
28 To this end, schools should include curriculum focused on a greener climate.
29
30

31 For trainees, it is crucial that the concept of green endoscopy is formally included into the
32 endoscopy training program from the beginning.
33
34

35 In conclusion, it is time to act at multiple levels to ensure green endoscopy worldwide.
36
37

38 While this requires massive change, we can no longer continue hearing examples of how
39 many football fields are needed to accommodate the waste of a hospital ward or how many
40 acres of forest would be needed to clean up the CO₂ emitted by a hospital. We need to move
41 the conversation forward with sustainable action. We must work closely together to ensure
42 the present and future sustainability of our planet and health.
43
44

1
2
3
4

REFERENCES

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1. NOAA National Centers for Environmental Information (NOAA NCEI). Monthly Global Climate Report for September 2022 [Internet]. NOAA NCEI; 2022 [cited 2022 Nov 17]. Available from: <https://www.ncei.noaa.gov/access/monitoring/monthly-report/global/202209>.
2. Vaccari M, Tudor T, Perteghella A. Costs associated with the management of waste from healthcare facilities: An analysis at national and site level. *Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA*. 2018;36(1):39-47.
3. Sun T, Ocko IB, Sturcken E, Hamburg SP. Path to net zero is critical to climate outcome. *Scientific reports*. 2021;11(1):22173.
4. Casadevall A. Climate change brings the specter of new infectious diseases. *The Journal of clinical investigation*. 2020;130(2):553-555.
5. Andrade L, O'Dwyer J, O'Neill E, Hynds P. Surface water flooding, groundwater contamination, and enteric disease in developed countries: A scoping review of connections and consequences. *Environmental pollution (Barking, Essex : 1987)*. 2018;236:540-549.
6. Swinburn BA, Kraak VI, Allender S, et al. The Global Syndemic of Obesity, Undernutrition, and Climate Change: The Lancet Commission report. *Lancet (London, England)*. 2019;393(10173):791-846.
7. Wu JC. Psychological Co-morbidity in Functional Gastrointestinal Disorders: Epidemiology, Mechanisms and Management. *Journal of neurogastroenterology and motility*. 2012;18(1):13-18.
8. Maurice JB, Siau K, Sebastian S, et al. Green endoscopy: a call for sustainability in the midst of COVID-19. *The lancet Gastroenterology & hepatology*. 2020;5(7):636-638.
9. Lenzen M, Malik A, Li M, et al. The environmental footprint of health care: a global assessment. *The Lancet Planetary health*. 2020;4(7):e271-e279.
10. Baddeley R, Aabakken L, Veitch A, Hayee B. Green Endoscopy: Counting the Carbon Cost of Our Practice. *Gastroenterology*. 2022;162(6):1556-1560.
11. Siau K, Hayee BH, Gayam S. Endoscopy's Current Carbon Footprint. *Techniques and Innovations in Gastrointestinal Endoscopy*. 2021;23(4):344-352.
12. Gayam S. Environmental Impact of Endoscopy: "Scope" of the Problem. *The American journal of gastroenterology*. 2020;115(12):1931-1932.
13. Donnelly L. Green endoscopy: practical implementation. *Frontline gastroenterology*. 2022;13(e1):e7-e12.
14. Namburar S, von Renteln D, Damianos J, et al. Estimating the environmental impact of disposable endoscopic equipment and endoscopes. *Gut*. 2022;71(7):1326-1331.

1
2
3 15. Goldis A, Goldis R, Chirila TV. Biomaterials in Gastroenterology: A Critical Overview.
4 *Medicina (Kaunas, Lithuania)*. 2019;55(11).

5
6 16. Volenec K, Pohl IJGi. The challenges: Stent materials from the perspective of the
7 manufacturer. 2016;5:98-104.

8
9 17. Larsen S, Russell RV, Ockert LK, et al. Rate and impact of duodenoscope
10 contamination: A systematic review and meta-analysis. *EClinicalMedicine*.
11 2020;25:100451.

12
13 18. Balan GG, Sfarti CV, Chiriac SA, Stanciu C, Trifan A. Duodenoscope-associated
14 infections: a review. *European journal of clinical microbiology & infectious diseases : official*
15 *publication of the European Society of Clinical Microbiology*.
16 2019;38(12):2205-2213.

17
18 19. Repici A, Khalaf K, Troncone E, Subramaniam S, Hassan C, Bhandari P.
19 International Delphi Consensus Study on disposable single-use endoscopy: A path
20 to clinical adoption. *Digestive and liver disease : official journal of the Italian Society*
21 *of Gastroenterology and the Italian Association for the Study of the Liver*. 2023.

22
23 20. Agrawal D, Tang Z. Sustainability of Single-Use Endoscopes. *Techniques and*
24 *Innovations in Gastrointestinal Endoscopy*. 2021;23(4):353-362.

25
26 21. Le NNT, Hernandez LV, Vakil N, Guda N, Patnode C, Jollet O. Environmental and
27 health outcomes of single-use versus reusable duodenoscopes. *Gastrointestinal*
28 *endoscopy*. 2022;96(6):1002-1008.

29
30 22. Lenti MV, Girardi D, Muzzi A, Novelli V, Di Sabatino A, Marena C. Prevalence and
31 risk factors for multi-drug resistant bacterial infections in patients undergoing
32 endoscopic retrograde cholangiopancreatography. *Digestive and liver disease : official*
33 *journal of the Italian Society of Gastroenterology and the Italian Association*
34 *for the Study of the Liver*. 2023.

35
36 23. Peery AF, Crockett SD, Murphy CC, Lund JL, Dellon ES, Williams JL, Jensen ET, Shaheen
37 NJ, Barritt AS, Lieber SR, Kocher B, Barnes EL, Fan YC, Pate V, Galanko J, Baron TH,
38 Sandler RS. Burden and Cost of Gastrointestinal, Liver, and Pancreatic Diseases in the
39 United States: Update 2018. *Gastroenterology*. 2019 Jan;156(1):254-272.e11. doi:
40 10.1053/j.gastro.2018.08.063. Epub 2018 Oct 10. Erratum in: *Gastroenterology*. 2019
41 May;156(6):1936. PMID: 30315778; PMCID: PMC6689327.

42
43 24. Maida M, Sferrazza S, Savarino E, et al. Impact of the COVID-19 pandemic on
44 Gastroenterology Divisions in Italy: A national survey. *Digestive and liver disease : official*
45 *journal of the Italian Society of Gastroenterology and the Italian Association*
46 *for the Study of the Liver*. 2020;52(8):808-815.

47
48 25. Rizan C, Reed M, Bhutta MF. Environmental impact of personal protective equipment
49 distributed for use by health and social care services in England in the first six months
50 of the COVID-19 pandemic. *Journal of the Royal Society of Medicine*.
51 2021;114(5):250-263.

52
53 26. Rizan C, Bhutta MF, Reed M, Lillywhite RJJoCP. The carbon footprint of waste
54 streams in a UK hospital. 2021;286:125446.

1
2
3 27. Vassallo R, Venezia L, Zullo A, et al. Safety and protection in endoscopic services
4 during phase II of COVID-19 pandemic: a national survey. *European journal of*
5 *gastroenterology & hepatology*. 2021;33(7):974-976.
6
7 28. Gordon IO, Sherman JD, Leapman M, Overcash M, Thiel CL. Life Cycle Greenhouse
8 Gas Emissions of Gastrointestinal Biopsies in a Surgical Pathology Laboratory.
9 *American journal of clinical pathology*. 2021;156(4):540-549.
10
11 29. Bortoluzzi F, Sorge A, Vassallo R, et al. Sustainability in gastroenterology and
12 digestive endoscopy: Position Paper from the Italian Association of Hospital
13 Gastroenterologists and Digestive Endoscopists (AIGO). *Digestive and liver disease*
14 : official journal of the Italian Society of Gastroenterology and the Italian Association
15 for the Study of the Liver. 2022;54(12):1623-1629.
16
17 30. Frazzoni L, La Marca M, Radaelli F, et al. Systematic review with meta-analysis: the
18 appropriateness of colonoscopy increases the probability of relevant findings and
19 cancer while reducing unnecessary exams. *Alimentary pharmacology & therapeutics*.
20 2021;53(1):22-32.
21
22 31. Bjørsum-Meyer T, Toth E, Koulaouzidis A. Carbon footprint from superfluous
23 colonoscopies: potentialities to scale down the impact. *Gut*. 2022.
24
25 32. Rodríguez-de-Santiago E, Frazzoni L, Fuccio L, et al. Digestive findings that do not
26 require endoscopic surveillance - Reducing the burden of care: European Society of
27 Gastrointestinal Endoscopy (ESGE) Position Statement. *Endoscopy*.
28 2020;52(6):491-497.
29
30 33. Early DS, Ben-Menachem T, Decker GA, et al. Appropriate use of GI endoscopy.
31 *Gastrointestinal endoscopy*. 2012;75(6):1127-1131.
32
33 34. de Franchis R, Bosch J, Garcia-Tsao G, Reiberger T, Ripoll C. Baveno VII - Renewing
35 consensus in portal hypertension. *Journal of hepatology*. 2022;76(4):959-974.
36
37 35. Pallio S, Melita G, Shahini E, et al. Diagnosis and Management of Esophagogastric
38 Varices. *Diagnostics (Basel, Switzerland)*. 2023;13(6).
39
40 36. Maida M, Macaluso FS, Ianiro G, et al. Screening of colorectal cancer: present and
41 future. *Expert review of anticancer therapy*. 2017;17(12):1131-1146.
42
43 37. Plevris N, Lees CW. Disease Monitoring in Inflammatory Bowel Disease: Evolving
44 Principles and Possibilities. *Gastroenterology*. 2022;162(5):1456-1475.e1451.
45
46 38. Pouw RE, Barret M, Biermann K, et al. Endoscopic tissue sampling - Part 1: Upper
47 gastrointestinal and hepatopancreatobiliary tracts. European Society of
48 Gastrointestinal Endoscopy (ESGE) Guideline. *Endoscopy*. 2021;53(11):1174-1188.
49
50 39. Pouw RE, Bisschops R, Gecse KB, et al. Endoscopic tissue sampling - Part 2: Lower
51 gastrointestinal tract. European Society of Gastrointestinal Endoscopy (ESGE)
52 Guideline. *Endoscopy*. 2021;53(12):1261-1273.
53
54 40. Hassan C, Pickhardt PJ, Rex DK. A resect and discard strategy would improve cost-
55 effectiveness of colorectal cancer screening. *Clinical gastroenterology and*
56
57
58
59
60

1
2
3 *hepatology : the official clinical practice journal of the American Gastroenterological*
4 *Association. 2010;8(10):865-869, 869.e861-863.*
5

6 41. Maida M, Marasco G, Facciorusso A, et al. Effectiveness and application of artificial
7 intelligence for endoscopic screening of colorectal cancer: the future is now. *Expert*
8 *review of anticancer therapy. 2023;23(7):719-729.*
9

10 42. Maida M, Ventimiglia M, Facciorusso A, Vitello A, Sinagra E, Marasco G.
11 Effectiveness and safety of 1-L PEG-ASC versus other bowel preparations for
12 colonoscopy: A meta-analysis of nine randomized clinical trials. *Digestive and liver*
13 *disease : official journal of the Italian Society of Gastroenterology and the Italian*
14 *Association for the Study of the Liver. 2023;55(8):1010-1018.*
15

16 43. Shahini E, Sinagra E, Vitello A, et al. Factors affecting the quality of bowel preparation
17 for colonoscopy in hard-to-prepare patients: Evidence from the literature. *World*
18 *journal of gastroenterology. 2023;29(11):1685-1707.*
19

20 44. Maida M, Sferrazza S, Maida C, et al. Management of antiplatelet or anticoagulant
21 therapy in endoscopy: A review of literature. *World journal of gastrointestinal*
22 *endoscopy. 2020;12(6):172-192.*
23

24 45. Wilcox CM, Waites K, Brookings ES. Use of sterile compared with tap water in
25 gastrointestinal endoscopic procedures. *American journal of infection control.*
26 1996;24(5):407-410.
27

28 46. Chartier Y. WHO-Safe management of wastes from health-care activities—2nd ed.
29 2014.
30

31 47. Purohit A, Smith J, Hibble A. Does telemedicine reduce the carbon footprint of
32 healthcare? A systematic review. *Future healthcare journal. 2021;8(1):e85-e91.*
33

34 48. Costantino A, Bortoluzzi F, Giuffrè M, et al. Correct use of telemedicine in
35 gastroenterology, hepatology, and endoscopy during and after the COVID-19
36 pandemic: Recommendations from the Italian association of hospital
37 gastroenterologists and endoscopists (AIGO). *Digestive and liver disease : official*
38 *journal of the Italian Society of Gastroenterology and the Italian Association for the*
39 *Study of the Liver. 2021;53(10):1221-1227.*
40

41 49. Sinagra E, Busacca A, Guida L, et al. Telemedicine Is an Effective Tool to Monitor
42 Disease Activity in IBD Patients in the COVID-19 Era: A Single Centre Experience
43 Based on Objective Data. *Gastroenterology Insights. 2022; 13(1):117-126.*
44

45 50. Fantini MC, Biancone L, Dragoni G, et al. Telemedicine and Remote Screening for
46 COVID-19 in Inflammatory Bowel Disease Patients: Results From the SoCOVID-19
47 Survey. *Inflammatory bowel diseases. 2020;26(11):e134-e136.*
48

49 51. Rodríguez de Santiago E, Dinis-Ribeiro M, Pohl H, et al. Reducing the environmental
50 footprint of gastrointestinal endoscopy: European Society of Gastrointestinal
51 Endoscopy (ESGE) and European Society of Gastroenterology and Endoscopy
52 Nurses and Associates (ESGENA) Position Statement. *Endoscopy. 2022;54(8):797-*
53 *826.*
54

1
2
3 52. Sebastian S, Dhar A, Baddeley R, et al. Green endoscopy: British Society of
4 Gastroenterology (BSG), Joint Accreditation Group (JAG) and Centre for Sustainable
5 Health (CSH) joint consensus on practical measures for environmental sustainability
6 in endoscopy. *Gut*. 2023;72(1):12-26.
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Table 1. Digestive findings that might not require endoscopic surveillance.

	Condition	Prevalence	Malignancy risk
Esophagus	Inlet patch	0.1 % – 12 %	0 – 1.6 % risk of dysplasia
	Erosive esophagitis LA grade A or B	11%	0 – 9 % risk of Barrett's esophagus
	< 1 cm columnar-lined esophagus	10%	No increased risk of esophageal cancer
Stomach	Intestinal metaplasia or atrophy limited to one location (i. e., antrum or corpus only) without dysplasia	Up to 25%	0.55 % risk of progression to gastric cancer
	Fundic gland polyps	13%-77%	No documented risk of gastric cancer if < 1 cm and no suspicious features
Subepitelial lesions	Leiomyoma	0.08% - 0.43%	Benign lesion
	Lipoma	0.2%	Benign lesion
	Pancreatic rest	0.6%-13.7%	Anecdotal malignant transformation
Duodenum	Duodenal peptic ulcer	2%-13%	No cancer risk
Pancreas	Serous cystic neoplasm	Up to 16% of pancreatic cystic neoplasms	Benign lesion
Colon	Low-risk adenomas (adenoma <10 mm without high grade dysplasia, or < 4 adenomas, or serrated polyp < 10 mm without dysplasia).	~15 % – 30 %	No increased risk versus general population

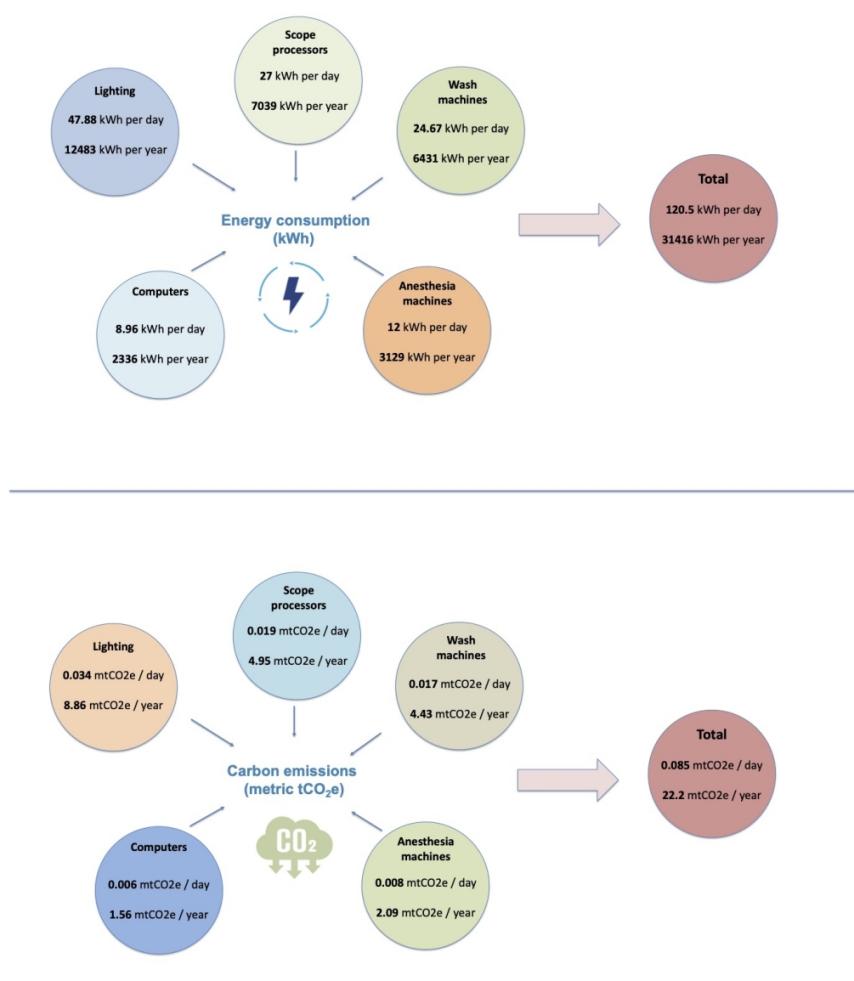

1
2
3
4
5
6
7

Figure 1

549x600mm (72 x 72 DPI)

59
60

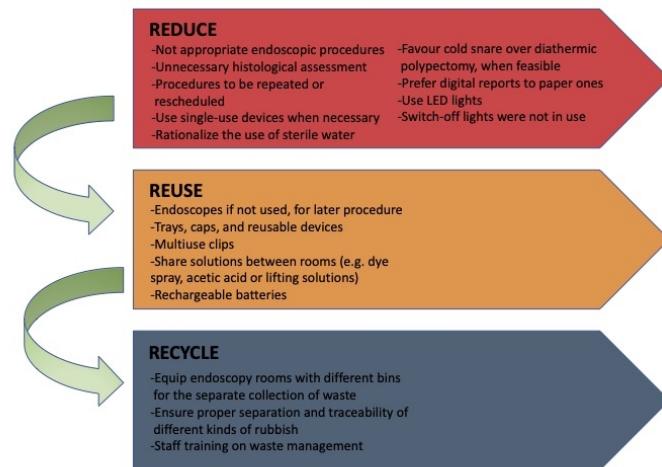


Figure 2

338x190mm (72 x 72 DPI)

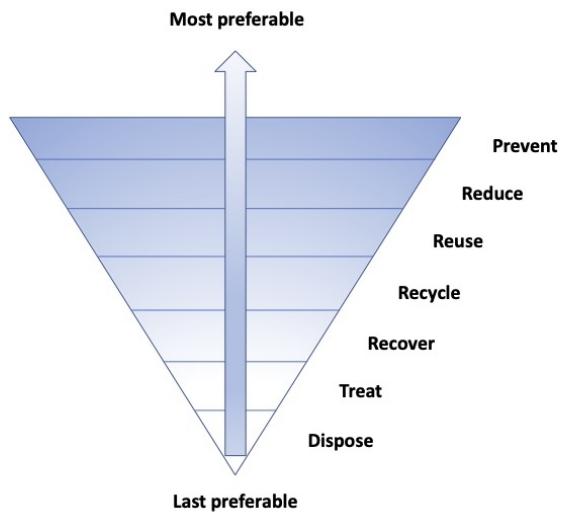


Figure 3

338x190mm (72 x 72 DPI)